Pre_GI: SWBIT SVG BLASTN

Query: NC_009699:3839575 Clostridium botulinum F str. Langeland chromosome, complete genome

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: Clostridium botulinum F strain Langeland was identified in 1958 from home-prepared liver paste involved in an outbreak of foodborne botulism on the island of Langeland, in Denmark. Produces botulinum, one of the most potent toxins known. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin. Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008011:1394777 Lawsonia intracellularis PHE/MN1-00, complete genome

Lineage: Lawsonia intracellularis; Lawsonia; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Lawsonia intracellularis PHE/MN1-00 was isolated from intestinal mucosal lesions in pigs that had proliferative enteropathy (PE). When introduced into health pigs, this organism produced the clinical and histological signs of PE. Causative agent for proliferative enteropathy in swine. This organism causes proliferative enteropathy (ileitis) in swine and other domesticated animals resulting in severe losses each year. This obligate intracellular pathogen infects the mucosa of the lower intestinal tract by initially infecting crypt cells, which are precursors that normally grow and divide in order to replace the epithelial cells. Once infection occurs, the crypt cells are stimulated to grow and divide abnormally, resulting in the proliferative phenotype. In severe cases of the disease the entire bowel can become affected and persist for up to 40 days, greatly affecting the host animal.