Pre_GI: SWBIT SVG BLASTN

Query: NC_009698:3211131 Clostridium botulinum A str. Hall chromosome, complete genome

Lineage: Clostridium botulinum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: Clostridium botulinum A strain Hall was received at Fort Detrick from Harvard University in 1947. The strain is presumably one from Dr. Ivan Hall's collection, but the exact strain number has been lost. This strain produces high amounts of type A toxin. Produces botulinum, one of the most potent toxins known. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. This organism produces one of the most potent and deadly neurotoxins known, a botulinum toxin that prevents the release of acetylcholine at the neuromuscular junction, thereby inhibiting muscle contraction and causing paralysis. In most cases the diseased person dies of asphyxiation as a result of paralysis of chest muscles involved in breathing. The spores are heat-resistant and can survive in inadequately heated, prepared, or processed foods. Spores germinate under favorable conditions (anaerobiosis and substrate-rich environment) and bacteria start propagating very rapidly, producing the toxin. Botulinum toxin, and C. botulinum cells, has been found in a wide variety of foods, including canned ones. Almost any food that has a high pH (above 4.6) can support growth of the bacterium.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003228:2973266 Bacteroides fragilis NCTC 9343, complete genome

Lineage: Bacteroides fragilis; Bacteroides; Bacteroidaceae; Bacteroidales; Bacteroidetes; Bacteria

General Information: This organism can become an opportunistic pathogen, infecting anywhere in the body and causing abcess formation. Enterotoxigenic Bacterioides fragilis (ETBF) is associated with diarrheal diseases. Common gut bacterium. This group of microbes constitute the most abundant members of the intestinal microflora of mammals. Typically they are symbionts, but they can become opportunistic pathogens in the peritoneal (intra-abdominal) cavity. Breakdown of complex plant polysaccharides such as cellulose and hemicellulose and host-derived polysaccharides such as mucopolysaccharides is aided by the many enzymes these organisms produce. Although only a minor component of the human gut microflora, this organism is a major component of clinical specimens and is the most common anaerobe isolated.