Pre_GI: SWBIT SVG BLASTN

Query: NC_009668:445134 Ochrobactrum anthropi ATCC 49188 chromosome 2, complete sequence

Lineage: Ochrobactrum anthropi; Ochrobactrum; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Soil bacterium that can cause opportunistic infections. Ochrobactrum anthropi is an opportunistic human pathogen usually causing infection in association with indwelling medical devices, such as catheters and drainage tubes. This organism and related species have also been isolated from soil, activated sludge, and plants. Ochrobactrum anthropi is a Gram-negative, anaerobic, motile bacterium. A common soil bacteria, it was originally considered as an opportunistic pathogen, causing infections in immunocompromised patients, patients with indwelling catheters or peritoneal dialysis but it is now emerging as a more and more important nosocomial pathogen. The first case of human infection was described in 1980. It has been isolated from blood, the urogenital tract, respiratory tract and eyes, and it can be part of the normal intestinal flora. It is resistant to many antibiotics, especially the beta-lactams.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010337:2793667 Heliobacterium modesticaldum Ice1, complete genome

Lineage: Heliobacterium modesticaldum; Heliobacterium; Heliobacteriaceae; Clostridiales; Firmicutes; Bacteria

General Information: Heliobacterium modesticaldum strain Ice1, the type strain of this species, was isolated from Icelandic hot spring volcanic soils. It grows optimally above 50 degrees Celsius, grows best photoheterotrophically, but can grow in the dark chemotrophically on pyruvate. Phototrophic thermophile. This organism is an anoxygenic phototroph isolated from hot spring microbial mats and volcanic soil. Cell wall structure, the ability to form endospores, and 16S ribosomal RNA analysis place Heliobacterium modesticaldum in a family of phototrophic bacteria related to the Clostridia. Heliobacterium modesticaldum is able to fix nitrogen and may contribute significantly to the nitrogen availability in microbial mats.