Pre_GI: SWBIT SVG BLASTN

Query: NC_009668:445134 Ochrobactrum anthropi ATCC 49188 chromosome 2, complete sequence

Lineage: Ochrobactrum anthropi; Ochrobactrum; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Soil bacterium that can cause opportunistic infections. Ochrobactrum anthropi is an opportunistic human pathogen usually causing infection in association with indwelling medical devices, such as catheters and drainage tubes. This organism and related species have also been isolated from soil, activated sludge, and plants. Ochrobactrum anthropi is a Gram-negative, anaerobic, motile bacterium. A common soil bacteria, it was originally considered as an opportunistic pathogen, causing infections in immunocompromised patients, patients with indwelling catheters or peritoneal dialysis but it is now emerging as a more and more important nosocomial pathogen. The first case of human infection was described in 1980. It has been isolated from blood, the urogenital tract, respiratory tract and eyes, and it can be part of the normal intestinal flora. It is resistant to many antibiotics, especially the beta-lactams.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_005956:1402500 Bartonella henselae str. Houston-1, complete genome

Lineage: Bartonella henselae; Bartonella; Bartonellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Bartonella henselae str. Houston-1 (ATCC 49882) was isolated from human blood in Houston Texas. Causative agent of cat scratch fever. This group of alpha proteobacteria are unique among pathogens in that they cause angiogenic lesions. This organism was identified as the causative agent of cat scratch fever, a disease found commonly in children or in immunocompromised adults. The proliferation of the vascular endothelium (bacillary angiomatosis) is characterisitic of Bartonella infection and results in multiplication of the bacterium's host cells. Infected macrophages are stimulated to release vascular endothelial growth factor (VEGF) and interleukin 1 beta, both of which promote angiogenesis. Endothelial cells are also stimulated to grow and divide by direct contact with bacterial cells. In addition, programmed cell death (apoptosis) of endothelial cells is inhibited, combatting a common mechanism eukaryotic cells use to deal with bacterial infection. Other pathogenicity factors include pili and outer membrane adhesins for attachment to host cells.