Pre_GI: SWBIT SVG BLASTN

Query: NC_009664:1569335 Kineococcus radiotolerans SRS30216, complete genome

Lineage: Kineococcus radiotolerans; Kineococcus; Kineosporiaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This organism is a coccoid bacterium originally isolated from a high-level radioactive waste cell at the Savannah River Site in Aiken, South Carolina, USA, in 2002. Radiation-resistant bacterium. Similarly to Deinococcus radiodurans, K. radiotolerans exhibits a high degree of resistance to ionizing gamma-radiation. Cells are also highly resistant to dessication. Kineococcus-like 16S rRNA gene sequences have been reported from the Mojave desert and other arid environments where these bacteria seem to be ubiquitous. Because of its high resistance to ionizing radiation and desiccation, K. radiotolerans has potential use in applications involving in situ biodegradation of problematic organic contaminants from highly radioactive environments. Moreover, comparative functional genomic characterization of this species and other known radiotolerant bacteria such as Deinococcus radiodurans and Rubrobacter xylanophilus will shed light onto the strategies these bacteria use for survival in high radiation environments, as well as the evolutionary origins of radioresistance and their highly efficient DNA repair machinery. This organism produces an orange carotenoid-like pigment. Cell growth occurs between 11-41 degresss C, pH 5-9, and in the presence of <5% NaCl and <20% glucose. Carbohydrates and alcohols are primary growth substrates.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011059:2233993 Prosthecochloris aestuarii DSM 271, complete genome

Lineage: Prosthecochloris aestuarii; Prosthecochloris; Chlorobiaceae; Chlorobiales; Chlorobi; Bacteria

General Information: This species is a green sulfur bacterium which forms sedimentary biofilm layers. It has been shown to be associated with coral killed by Black-Band Disease (BBD) a microbial infection of larger coral species. This is a concern for reef conservationists as the larger species are responsible for coral scaffolds, and their reduction by disease would have considerable impact on the reef structure. While there is currently no cause-and-effect link between Prosthecochloris aestuarii and BBD, the species was found on coral which was killed by the disease and was not found on healthy coral or in the surrounding seawater.