Pre_GI: SWBIT SVG BLASTN

Query: NC_009662:837500 Nitratiruptor sp. SB155-2, complete genome

Lineage: Nitratiruptor; Nitratiruptor; Nautiliaceae; Nautiliales; Proteobacteria; Bacteria

General Information: This strain was isolated from a deep-sea hydrothermal vent in the Iheya North field in the Mid-Okinawa Trough, Japan as part of a larger diversity study. This rod-shaped bacterium grows chemolithoautotrophically and can utilize a wide spectrum of electron donors and acceptors (i.e. hydrogen, sulfur compounds, nitrate and oxygen). It can occupy different ecological niches, and its metabolic versatility probably enables it to adapt to the geochemical variability in deep-sea hydrothermal environments.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007168:1705763 Staphylococcus haemolyticus JCSC1435, complete genome

Lineage: Staphylococcus haemolyticus; Staphylococcus; Staphylococcaceae; Bacillales; Firmicutes; Bacteria

General Information: Staphylococcus haemolyticus JCSC1435 was isolated from a Japanese inpatient at Juntendo Hospital, Tokyo, in 2000. This strain is a highly resistant strain which has been shown to generate spontaneous antibiotic sensitive mutants. Causes opportunistic infections in humans. Staphylcocci are generally found inhabiting the skin and mucous membranes of mammals and birds. Some members of this genus can be found as human commensals and these are generally believed to have the greatest pathogenic potential in opportunistic infections. Staphylococcus haemolyticus was originally isolated from human skin and traditionally considered to be a nonpathogenic commensal. Recently this organism has been recognized as a pathogen in animals and humans. It is known to be involved in opportunistic infections associated with the implantation of foreign bodies, paticularly in those with compromised immune systems. Resistance to multiple antibiotics has been observed in clinical isolates and it is possible S. haemolyticus could serve a donor or resistance genes to other more virulent staphlococci.