Pre_GI: SWBIT SVG BLASTN

Query: NC_009654:3215205 Marinomonas sp. MWYL1, complete genome

Lineage: Marinomonas; Marinomonas; Oceanospirillaceae; Oceanospirillales; Proteobacteria; Bacteria

General Information: Marinomonas MWYL1 was isolated from the root surface of the salt marsh grass Spartina anglica, growing near the North Norfolk, England village of Stiffkey. The genus Marinomonas comprises a widespread group of g -proteobacteria that exist in coastal waters, and which had been earlier been included in the genus Alteromonas. The interest in Marinomonas MWYL 1 was that it could grow on the betaine molecule Dimethylsulphoniopropionate (DMSP) as sole carbon source and, when it did do, it released large amounts of the gas dimethyl sulphide. DMSP is a compatible solute that is used by many marine phytoplankton and seaweed macroalgae as an osmoticum and an anti-stress compound. In addition, a few known land angiosperms make DMSP and these include certain species of Spartina - hence the choice of these plants as a source for DMSP-degrading bacteria. Indeed, others had shown previously that the DMSP-catabolising bacteria isolated from Spartina root surfaces included Marinomonas strains.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010677:353839 Francisella tularensis subsp. mediasiatica FSC147, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: This isolate was collected from a gerbil in central Asia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.