Pre_GI: SWBIT SVG BLASTN

Query: NC_009512:3118907 Pseudomonas putida F1, complete genome

Lineage: Pseudomonas putida; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from a polluted creek in Urbana, Illinois, USA by enrichment culture with ethylbenzyne as a sole source of carbon and energy. Its ability to degrade several different compounds including benzene, toluene, and ethylbenzene makes this species useful in the bioremediation of sites contaminated with multiple aromatic hydrocarbons. Underground gasoline tanks which have developed leaks can contaminate soil and water with a variety of these compounds. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. As they are metabolically versatile, and well characterized, it makes them great candidates for biocatalysis, bioremediation and other agricultural applications. Certain strains have been used in the production of bioplastics.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007963:2777066 Chromohalobacter salexigens DSM 3043, complete genome

Lineage: Chromohalobacter salexigens; Chromohalobacter; Halomonadaceae; Oceanospirillales; Proteobacteria; Bacteria

General Information: Chromohalobacter salexigens DSM 3043 was first isolated from a solar salt facility on Bonaire Island, Netherlands Antilles. A moderate halophile which can grow on a variety of salts. This bacterium is a moderate halophile, yet does not require high concentrations of sodium chloride. The salt requirements of this organism can be met by ions of other salts, such as potassium, rubidium, ammonium, bromide. Several plasmids have been isolated from this organism. Plasmid pMH1 contains genes for resistance to kanamycin, neomycin, and tetracycline. A smaller plasmid, pHE1, which does not code for antibiotic resistance genes, has also been isolated.