Pre_GI: SWBIT SVG BLASTN

Query: NC_009445:7220929 Bradyrhizobium sp. ORS 278 chromosome, complete genome

Lineage: Bradyrhizobium; Bradyrhizobium; Bradyrhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This strain was isolated from an Aeschynomene stem nodule and is photosynthetic, which is a rare trait in Rhizobium bacteria. These strains exhibit a photoheterotrophic and strictly aerobic photosynthesis. In culture, most stem isolates show the same pink coloration, while a few strains produce orange pigmentation. Pigment analyses showed that bacteriochlorophyll and spirilloxanthin, two pigments of the light harvesting system, are common to all of these photosynthetic Bradyrhizobium strains, whereas orange strains produce an additional bicyclic carotenoid, canthaxanthin (4,4'-diketo-beta-carotene). Bradyrhizobium sp. strain ORS278 produces the highest quantity of canthaxanthin of all tested photosynthetic bacteria; canthaxanthin represents 85% of its total carotenoid content.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011883:2680380 Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774,

Lineage: Desulfovibrio desulfuricans; Desulfovibrio; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Desulfovibrio desulfuricans subsp. desulfuricans str. ATCC 27774 was isolated from the rumen of a sheep. D. desulfuricans reduces sulfate to sulfide found in soil, freshwater, saltwater and the intestinal tract of animals. This organism grows anaerobically and utilizes a wide variety of electron acceptors, including sulfate, sulfur, nitrate, and nitrite, as well as others. The nitrate reduction pathway is not expressed while sulfate is available. Alternatively, the sulfate reduction pathway is constitutively expressed when the cells are growing with nitrate reduction. A number of toxic metals are reduced, including uranium (VI), chromium (VI) and iron (III), making this organism of interest as bioremediator. Metal corrosion, a problem that is partly the result of the collective activity of this bacterium, results in billions of dollars in losses each year to the petroleum industry. This organism is responsible for the production of poisonous hydrogen sulfide gas in marine sediments and in terrestrial environments such as drilling sites for petroleum products.