Pre_GI: SWBIT SVG BLASTN

Query: NC_009439:794498 Pseudomonas mendocina ymp, complete genome

Lineage: Pseudomonas mendocina; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: Soil and subsurface bacterium. Strain ymp was isolated as part of the Yucca Mountain Project from sediment in a surface holding pond of a drilling operation at the Nevada Test Site, NV, USA (the proposed site of the high-level nuclear repository). Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. Pseudomonas mendocina is a pentachlorophenol (PCP)-degrading bacterium was isolated from PCP-contaminated soil. It is able to act as a bioremediation agent without the accumulation of inhibitory toxic compounds.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009664:570768 Kineococcus radiotolerans SRS30216, complete genome

Lineage: Kineococcus radiotolerans; Kineococcus; Kineosporiaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This organism is a coccoid bacterium originally isolated from a high-level radioactive waste cell at the Savannah River Site in Aiken, South Carolina, USA, in 2002. Radiation-resistant bacterium. Similarly to Deinococcus radiodurans, K. radiotolerans exhibits a high degree of resistance to ionizing gamma-radiation. Cells are also highly resistant to dessication. Kineococcus-like 16S rRNA gene sequences have been reported from the Mojave desert and other arid environments where these bacteria seem to be ubiquitous. Because of its high resistance to ionizing radiation and desiccation, K. radiotolerans has potential use in applications involving in situ biodegradation of problematic organic contaminants from highly radioactive environments. Moreover, comparative functional genomic characterization of this species and other known radiotolerant bacteria such as Deinococcus radiodurans and Rubrobacter xylanophilus will shed light onto the strategies these bacteria use for survival in high radiation environments, as well as the evolutionary origins of radioresistance and their highly efficient DNA repair machinery. This organism produces an orange carotenoid-like pigment. Cell growth occurs between 11-41 degresss C, pH 5-9, and in the presence of <5% NaCl and <20% glucose. Carbohydrates and alcohols are primary growth substrates.