Pre_GI: SWBIT SVG BLASTN

Query: NC_009381:1783886 Yersinia pestis Pestoides F chromosome, complete genome

Lineage: Yersinia pestis; Yersinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Atypical strain isolated from the former Soviet Union, USSR. This strain lacks a plasminogen activator and is virulent by the aerosol route. Specific virulence factors are encoded within pathogenicity islands (PAIs) that are required for the invasive phenotype associated with Yersinia infections. One key virulence plasmid contained by the three human-specific pathogens is pCD1/pYv, which encodes a type III secretion system for the delivery of virulence proteins that contribute to internalization into the host cell. It is the causative agent of plague (bubonic and pulmonary) a devastating disease which has killed millions worldwide. The organism can be transmitted from rats to humans through the bite of an infected flea or from human-to-human through the air during widespread infection. Yersinia pestis is an extremely pathogenic organism that requires very few numbers in order to cause disease, and is often lethal if left untreated. The organism is enteroinvasive, and can survive and propagate in macrophages prior to spreading systemically throughout the host. Yersinia pestis also contains a PAI on the chromosome that is similar to the SPI-2 PAI from Salmonella that allows intracellular survival in the organism.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011886:2369980 Arthrobacter chlorophenolicus A6, complete genome

Lineage: Arthrobacter chlorophenolicus; Arthrobacter; Micrococcaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Arthrobacter chlorophenolicus A6 (DSM 12829) was isolated from soil at Fort Collins, Colorado, USA and is able to use 4-chlorophenol as a sole source of carbon and energy. This organism can degrade 4-chlorophenol in soil at temperatures ranging from 5 to 28 degrees C making it a good candidate for bioremediation. Arthrobacter chlorophenolicus can degrade high concentrations of para-substituted phenols, such as 4-chlorophenol and 4-nitrophenol and can survive under harsh conditions, such as cold temperature and during starvation in soil.