Pre_GI: SWBIT SVG BLASTN

Query: NC_009342:795500 Corynebacterium glutamicum R chromosome, complete genome

Lineage: Corynebacterium glutamicum; Corynebacterium; Corynebacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain was isolated from meadow soil in Japan. Soil bacterium with industrial uses. They may be found as members of the normal microflora of humans, where these bacteria find a suitable niche in virtually every anatomic site. This organism is a well-studied soil bacterium of considerable importance in biotechnology, in particular for the fermentative production of L-amino acids for food and fodder industry. The name was originaly given for this species for its ability to produce significant quantities (>100 g per liter) of glutamic acid (glutamate), an important food enhancer that has a meaty taste and flavor. C. glutamicum is currently used commercially to produce glutamate and other amino acids (L-lysine) and compounds. The first strain of the species was isolated in 1957 by S. Kinoshita and colleagues while searching for an efficient glutamate-producer.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_002935:2292835 Corynebacterium diphtheriae NCTC 13129, complete genome

Lineage: Corynebacterium diphtheriae; Corynebacterium; Corynebacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain was isolated in 1997 from the pharyngeal membrane of a 72-year-old unimmunized UK female with clinical diphtheria acquired during a short Baltic cruise. Causative agent of diphtheria. They may be found as members of the normal microflora of humans, where these bacteria find a suitable niche in virtually every anatomic site. This organism is the best known and most widely studied species of the genus. It is the causal agent of the disease diphtheria, a deadly infectious disease spreading from person to person by respiratory droplets from the throat through coughing and sneezing. In the course of infection, the bacteria invade and colonize tissues of the upper respiratory tract, proliferate and produce exotoxin that inhibits protein synthesis and causes local lesions and systemic degenerative changes in the heart, muscles, peripheral nerves, liver and other vital organs. In 1951, Victor Freeman discovered that pathogenic (toxigenic) strains. Moreover, later it was found that the gene for toxin production is located in the DNA of the B-type phage.