Pre_GI: SWBIT SVG BLASTN

Query: NC_009256:3540531 Burkholderia vietnamiensis G4 chromosome 1, complete sequence

Lineage: Burkholderia vietnamiensis; Burkholderia; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: B. vietnamiensis strain G4 (formerly B.cepacia strain R1808) is the best trichloroethene (TCE) co-oxidizing strain yet discovered, having been isolated from an industrial waste treatment facility at Pensacola Naval Air Station, Florida, U.S.A. Burkholderia vietnamiensis is a member of the Burkholderia cepacia complex which contains a number of closely related Burkholderia species. Burkholderia vietnamiensis is commonly isolated from soil and water and has been studied as a plant growth promoting bacterium and as a bioremediation agent for aromatic hydrocarbons such as benzene and tolulene.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009138:1138917 Herminiimonas arsenicoxydans, complete genome

Lineage: Herminiimonas arsenicoxydans; Herminiimonas; Oxalobacteraceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Herminiimonas arsenicoxydans was isolated from heavy metal contaminated sludge from an industrial water treatment plant. This organism has a number of mechanisms for metabolizing arsenic allowing it to effectively colonize arsenic-contaminated environments. A bacterium capable of oxidizing and reducing arsenic. This heterotrophic bacterium is capable of reducing and oxidizing arsenic with the objective of detoxification. Arsenic is both a product from natural sources and of human activities, and is widely distributed in the environment, essentially in 3 different oxidation states: As (-III) (arsine), As (+III) (arsenite) and As (+V) (arseniate). The ecology of this metalloid is strongly dependent on microbial transformations which affect the mobility and bioavailability as well as the toxicity of arsenic in the environment.