Pre_GI: SWBIT SVG BLASTN

Query: NC_009138:2110500 Herminiimonas arsenicoxydans, complete genome

Lineage: Herminiimonas arsenicoxydans; Herminiimonas; Oxalobacteraceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Herminiimonas arsenicoxydans was isolated from heavy metal contaminated sludge from an industrial water treatment plant. This organism has a number of mechanisms for metabolizing arsenic allowing it to effectively colonize arsenic-contaminated environments. A bacterium capable of oxidizing and reducing arsenic. This heterotrophic bacterium is capable of reducing and oxidizing arsenic with the objective of detoxification. Arsenic is both a product from natural sources and of human activities, and is widely distributed in the environment, essentially in 3 different oxidation states: As (-III) (arsine), As (+III) (arsenite) and As (+V) (arseniate). The ecology of this metalloid is strongly dependent on microbial transformations which affect the mobility and bioavailability as well as the toxicity of arsenic in the environment.

No Graph yet!

Subject: NC_008825:2889933 Methylibium petroleiphilum PM1, complete genome

Lineage: Methylibium petroleiphilum; Methylibium; ; Burkholderiales; Proteobacteria; Bacteria

General Information: Methylibium petroleiphilum strain PM1 (ATCC BAA-1232) was isolated in 1998 from the biofilter of a treatment plant in an oil refinery in Los Angeles, California, USA. Strain PM1 is capable of degrading aromatic compounds such as benzene, toluene and xylenes. Methyl tertiary-butyl ether-degrading bacterium. Methylibium petroleiphilum is a methylotroph (able to utilize reduced one-carbon compounds) able to degrade methyl tertiary-butyl ether (MTBE) under aerobic conditions. MTBE is a gasoline additive used as an oxygenate and to raise the octane number.