Pre_GI: SWBIT SVG BLASTN

Query: NC_009052:5089963 Shewanella baltica OS155, complete genome

Lineage: Shewanella baltica; Shewanella; Shewanellaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from the Baltic Sea. A psychrophilic bacterium. This genus includes species that inhabit a wide range of environments and are capable of utilizing a wide variety of electron acceptors during anaerobic respiration including some insoluble metal oxides while using very few carbon sources such as lactate or acetate. This group of organisms have been studied extensively for their electron transport systems.This species is differentiated from other Shewanella spp. based on its ability to grow at 4 degrees C but not at 37, production of N-acetyl-beta-glucosaminidase, lack of chymotrypsin, and ability to use a variety of complex carbon compounds as carbon and energy sources.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007005:6056765 Pseudomonas syringae pv. syringae B728a, complete genome

Lineage: Pseudomonas syringae; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain is the causal agent of brown spot disease on beans. It was isolated from a snap bean leaflet in Wisconsin, USA. Plant pathogen. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This species includes many plant pathogens of important crops, which makes it a model organism in plant pathology. Its natural environment is on the surface of plant leaves and it can withstand various stressful conditions, like rain, wind, UV radiation and drought. It can colonize plants in a non-pathogenic state and can rapidly take advantage of changing environmental conditions to induce disease in susceptible plants by shifting gene expression patterns.