Pre_GI: SWBIT SVG BLASTN

Query: NC_009052:3381943 Shewanella baltica OS155, complete genome

Lineage: Shewanella baltica; Shewanella; Shewanellaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from the Baltic Sea. A psychrophilic bacterium. This genus includes species that inhabit a wide range of environments and are capable of utilizing a wide variety of electron acceptors during anaerobic respiration including some insoluble metal oxides while using very few carbon sources such as lactate or acetate. This group of organisms have been studied extensively for their electron transport systems.This species is differentiated from other Shewanella spp. based on its ability to grow at 4 degrees C but not at 37, production of N-acetyl-beta-glucosaminidase, lack of chymotrypsin, and ability to use a variety of complex carbon compounds as carbon and energy sources.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010001:4520979 Clostridium phytofermentans ISDg, complete genome

Lineage: Lachnoclostridium phytofermentans; Lachnoclostridium; Lachnospiraceae; Clostridiales; Firmicutes; Bacteria

General Information: Isolated from forest soil near the Quabbin Reservoir in Massachusetts, USA. This organism plays an important industrial and ecological role in the anaerobic fermentation of cellulose and produces economically significant levels of acetate and ethanol. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA.