Query: NC_009049:80184 Rhodobacter sphaeroides ATCC 17029 chromosome 1, complete sequence

Lineage: Rhodobacter sphaeroides; Rhodobacter; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: A photosynthetic bacterium useful in bioremediation. Anoxygenic photosynthesis, Carbon fixation, Nitrogen fixation. Bacteria belonging to the Rhodobacter group are metabolically versatile as they are able to grow using photosynthesis, chemosynthesis, and usually can grow under both anaerobic and aerobic conditions. It can grow aerobically and anaerobically in the light and anaerobically in the dark. It produces an intracytoplasmic membrane system consisting of membrane invaginations where the light harvesting complexes (LH1 and LH2) and the reaction center are synthesized.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_015709:1459838 Zymomonas mobilis subsp. pomaceae ATCC 29192 chromosome, complete

Lineage: Zymomonas mobilis; Zymomonas; Sphingomonadaceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: Country: United Kingdom; Isolation: Sick cider; Temp: Mesophile. The natural habitat of this organism includes sugar-rich plant saps where the bacterium ferments sugar to ethanol. The high conversion of sugars to ethanol makes this organism useful in industrial production systems, particularly in production of bioethanol for fuel. A recombinant strain of this bacterium is utilized for the conversion of sugars, particularly xylose, which is not utilized by another common sugar-fermenting organism such as yeast, to ethanol. Since xylose is a common breakdown product of cellulose or a waste component of the agricultural industry, it is an attractive source for ethanol production. Zymomonas mobilis was chosen for this process as it is ethanol-tolerant (up to 120 grams of ethanol per litre) and productive (5-10% more ethanol than Saccharomyces). This bacterium ferments using the Enter-Doudoroff pathway, with the result that less carbon is used in cellular biomass production and more ends up as ethanol, another factor that favors this organism for ethanol production.