Pre_GI: SWBIT SVG BLASTN

Query: NC_009012:3653111 Clostridium thermocellum ATCC 27405, complete genome

Lineage: Clostridium thermocellum; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: This strain is a well studied producer of endoglucanase and several restriction endonucleases. Thermophilic cellulose degrading bacterium. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This organism is a thermophilic anaerobe that produces an extracellular enzyme system capable of degrading crystalline cellulose to soluble sugars that are further utilized as the carbon source for growth.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_002607:1868371 Halobacterium sp. NRC-1, complete genome

Lineage: Halobacterium; Halobacterium; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: Chemoheterotrophic obligate extreme halophilic archeon. This microbe (strain ATCC 700922) is an obligately halophilic archeon that has adapted to growth under conditions of extremely high salinity. Motility is via tufts of polar flagella and intracellular gas vesicles are used for buoyancy. This organism grow aerobically and its ease of culturing combined with the availability of established methods of genetic manipulation in the laboratory make it an ideal model organism for study of the archaea.