Pre_GI: SWBIT SVG BLASTN

Query: NC_008825:3298506 Methylibium petroleiphilum PM1, complete genome

Lineage: Methylibium petroleiphilum; Methylibium; ; Burkholderiales; Proteobacteria; Bacteria

General Information: Methylibium petroleiphilum strain PM1 (ATCC BAA-1232) was isolated in 1998 from the biofilter of a treatment plant in an oil refinery in Los Angeles, California, USA. Strain PM1 is capable of degrading aromatic compounds such as benzene, toluene and xylenes. Methyl tertiary-butyl ether-degrading bacterium. Methylibium petroleiphilum is a methylotroph (able to utilize reduced one-carbon compounds) able to degrade methyl tertiary-butyl ether (MTBE) under aerobic conditions. MTBE is a gasoline additive used as an oxygenate and to raise the octane number.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008278:3025899 Frankia alni ACN14a, complete genome

Lineage: Frankia alni; Frankia; Frankiaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain was isolated from a green alder (Alnus crispa) growing in Tadoussac, Canada. These bacteria were originally linked to fungi, because of the mycelium-like filaments many of them form. This bacterium is able to establish a nitrogen-fixing symbiosis with alder (Alnus spp.) and myrtle (Myrica spp.), two pioneer plant genera of temperate regions, found on forest clearings, mine wastes, sand dunes and glacial moraines where nitrogen is the limiting factor. Frankia alni causes root hair deformation: it penetrates the cortical cells and induces the formation of nodules which resemble those induced by Rhizobium in legumes. These nodules are then colonized by vegetative hyphae (mycelium filaments) which differentiate into diazo-vesicles