Pre_GI: SWBIT SVG BLASTN

Query: NC_008825:2761499 Methylibium petroleiphilum PM1, complete genome

Lineage: Methylibium petroleiphilum; Methylibium; ; Burkholderiales; Proteobacteria; Bacteria

General Information: Methylibium petroleiphilum strain PM1 (ATCC BAA-1232) was isolated in 1998 from the biofilter of a treatment plant in an oil refinery in Los Angeles, California, USA. Strain PM1 is capable of degrading aromatic compounds such as benzene, toluene and xylenes. Methyl tertiary-butyl ether-degrading bacterium. Methylibium petroleiphilum is a methylotroph (able to utilize reduced one-carbon compounds) able to degrade methyl tertiary-butyl ether (MTBE) under aerobic conditions. MTBE is a gasoline additive used as an oxygenate and to raise the octane number.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009649:16907 Klebsiella pneumoniae subsp. pneumoniae MGH 78578 plasmid pKPN3,

Lineage: Klebsiella pneumoniae; Klebsiella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated from a patient in 1994. Opportunistic pathogen that causes multiple hospital-acquired infections. This organism is the most medically important organism within the genus Klebsiella. It is an environmental organism found in water, soil, and on the surface of plants. Several strains have been isolated from plant tissues and are nitrogen-fixing endophytes that may be a source of nitrogen for the plant. Other strains can become opportunistic pathogens which infect humans, and typically causes hospital-acquired infections in immunocompromised patients. Major sites of infection include the lungs, where it causes a type of pneumonia, and urinary tract infections. Klebsiella can also enter the bloodstream (bacterimia) and cause sepsis. The pathogen can also infect animals and cause inflammation of the uterus in horses as well as more generalized infections in other mammals. This organism expresses numerous pathogenicity factors, including multiple adhesins, capsular polysaccharide, siderophores, and lipopolysaccharide for the evasion of host defenses. The multiple antibiotic resistance genes carried on the chromosome inhibit efforts to clear the organism from infected patients via antibiotic use.