Pre_GI: SWBIT SVG BLASTN

Query: NC_008817:1443983 Prochlorococcus marinus str. MIT 9515, complete genome

Lineage: Prochlorococcus marinus; Prochlorococcus; Prochlorococcaceae; Prochlorales; Cyanobacteria; Bacteria

General Information: This strain was collected from the surface waters of the Equatorial Pacific. Marine cyanobacterium. This non-motile bacterium is a free-living marine organism that is one of the most abundant, as well as the smallest, on earth, and contributes heavily to carbon cycling in the marine environment. This cyanobacterium grows in areas of nitrogen and phosphorus limitation and is unique in that it utilizes divinyl chlorophyll a/b proteins as light-harvesting systems instead of phycobiliproteins. These pigments allow harvesting of light energy from blue wavelengths at low light intensity.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_013418:459650 Blattabacterium sp. (Periplaneta americana) str. BPLAN, complete

Lineage: Blattabacterium; Blattabacterium; Blattabacteriaceae; Flavobacteriales; Bacteroidetes; Bacteria

General Information: This organism is the endosymbiont of the American cockroach, Periplaneta americana. It is a Gram-negative maternally inherited bacteria which lives in specialized cells in the host's abdominal fat body. Phylogenetic analyses for the Blattabacterium-cockroach symbiosis supports the hypothesis of co-evolution between symbionts and hosts dating back to more than 140 million years ago. Cockroaches are omnivorous insects, often subsisting on a nitrogen-poor diet, and Blattabacterium have been hypothesized to participate in uric acid degradation, nitrogen assimilation, and nutrient provisioning. Genome sequencing and metabolic reconstruction shows that Blattabacterium can recycle nitrogen from urea and ammonia, which are uric acid degradation products, into glutamate, using urease and glutamate dehydrogenase, and thus would be able to provide its host with some essential amino acids, vitamins and cofactors. The bacterium relies on asparagine and glutamine supplied by the host; it may be able to make proline from arginine via the urea cycle.