Pre_GI: SWBIT SVG BLASTN

Query: NC_008782:1308007 Acidovorax sp. JS42, complete genome

Lineage: Acidovorax; Acidovorax; Comamonadaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Acidovorax sp. JS42, formerly Pseudomonas sp. JS42, was isolated from nitrobenzene-contaminated sediment and is capable of using 2-nitrotolulene as a sole carbon and energy source. 2-nitrotolulene, a nitroaromatic compound, is used in the manufacture of dyes, pigments and explosives. Nitroaromatic compounds, which contain an aromatic ring with one or more nitro groups attached, are a significant contaminant in industrial soils. Acidovorax sp. JS42 degrades 2-nitrotolulene by first removing the nitro moiety producing 3-methylcatechol. The enzyme involved in this process, 2-nitrotolulene dioxygenase, has been purified and characterized.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009138:1518315 Herminiimonas arsenicoxydans, complete genome

Lineage: Herminiimonas arsenicoxydans; Herminiimonas; Oxalobacteraceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Herminiimonas arsenicoxydans was isolated from heavy metal contaminated sludge from an industrial water treatment plant. This organism has a number of mechanisms for metabolizing arsenic allowing it to effectively colonize arsenic-contaminated environments. A bacterium capable of oxidizing and reducing arsenic. This heterotrophic bacterium is capable of reducing and oxidizing arsenic with the objective of detoxification. Arsenic is both a product from natural sources and of human activities, and is widely distributed in the environment, essentially in 3 different oxidation states: As (-III) (arsine), As (+III) (arsenite) and As (+V) (arseniate). The ecology of this metalloid is strongly dependent on microbial transformations which affect the mobility and bioavailability as well as the toxicity of arsenic in the environment.