Pre_GI: SWBIT SVG BLASTN

Query: NC_008618:1526392 Bifidobacterium adolescentis ATCC 15703, complete genome

Lineage: Bifidobacterium adolescentis; Bifidobacterium; Bifidobacteriaceae; Bifidobacteriales; Actinobacteria; Bacteria

General Information: Human gut bacterium. This species is a normal inhabitant of the healthy human gut. Newborns, especially those that are breast-fed, are colonized with Bifidobacteria within days after birth. This species was first isolated from the feces of a breast-fed infant. In one comprehensive 16S rDNA sequence-based enumeration of the colonic microbiota of three healthy adult humans it represents, on average, 0.008% of all 16S rDNA sequences and 4.302% of the sequences in its division (Eckburg et. They are saccharolytic organisms that produce acetic and lactic acids without generation of CO2, except during degradation of gluconate.

No Graph yet!

Subject: NC_008513:343540 Buchnera aphidicola str. Cc (Cinara cedri), complete genome

Lineage: Buchnera aphidicola; Buchnera; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is found in the cedar aphid, Cinara cedri. Aphid endosymbiont. Almost all aphids contain maternally transmitted bacteriocyte cells, which themselves contain bacteria called Buchnera. The aphids live on a restricted diet (plant sap), rich in carbohydrates, but poor in nitrogenous or other essential compounds. It is believed that the Buchnera provide the essential nutrients the host lacks. Besides a nutritional co-dependence, due to a co-existence of millions of years, Buchnera have lost the ability to produce cell surface components such as lipopolysaccharides. This makes for an obligate endosymbiont relationship between host and Buchnera. Buchnera are prokaryotic cells which belong to the gamma-Proteobacteria, closely related to the Enterobacteriaceae family. Phylogenetic studies using 16S rRNA indicate that the symbiotic relationship was established around 200-250 million years ago. Since Buchnera are closely related to Escherichia coli and Haemophilus influenzae, comparative genomic studies can shed light on the evolutionary mechanisms of intracellular endosymbiosis as well as the different underlying molecular basis between organisms with parasitic behavior and symbionts.