Pre_GI: SWBIT SVG BLASTN

Query: NC_008599:596849 Campylobacter fetus subsp. fetus 82-40, complete genome

Lineage: Campylobacter fetus; Campylobacter; Campylobacteraceae; Campylobacterales; Proteobacteria; Bacteria

General Information: This strain (82-40) was isolated from the blood of a human patient who was having a renal transplant and is the best characterized isolate of this species.. The ratio of bloodstream infection to diarrheal illnesses for C. fetus is nearly 400-fold higher than for C. jejuni, indicating its marked propensity for invasive disease compared to C. jejuni. Causes infertility, infectious abortions in cattle, opportunistic human pathogen. This organism causes infertlity and infectious abortions in domesticated sheep, goats and cattle. It is an opportunistic pathogen in humans which can severely affect immunocompromised patients. Initially the bacterium can cause gastroenteritis, and then spread systemically throughout the blood (bacteremia) and cause septicemia, meningitis, and other systemic infections. This layer is essential for host colonization, and prevents complemented-mediated immune responses by inhibiting complement C3b binding.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007426:205390 Natronomonas pharaonis DSM 2160, complete genome

Lineage: Natronomonas pharaonis; Natronomonas; Halobacteriaceae; Halobacteriales; Euryarchaeota; Archaea

General Information: Isolated from Lake Gabara in Egypt. Extreme haloalkaliphilic archeon. Natronomonas pharaonis is able to survive at high salt and pH conditions which results in limited nitrogen availability through ammonium. In order to compensate for this, Natronomonas pharaonis has developed three systems to promote nitrogen assimilation: direct uptake of ammonia, uptake of nitrate, and uptake of urea. Another problem with high pH environments is the use of a proton gradient for the generation of ATP, which other alkaliphiles have adapted to by substitution of sodium ions for protons. However, this organism utilizes protons for ATP generation as determined by experimental data.