Pre_GI: SWBIT SVG BLASTN

Query: NC_008528:610070 Oenococcus oeni PSU-1, complete genome

Lineage: Oenococcus oeni; Oenococcus; Leuconostocaceae; Lactobacillales; Firmicutes; Bacteria

General Information: This strain was isolated at Penn State University, USA and is used commercially for malolactic fermentation in wines. Lactic acid bacterium used in wine production. Oenococcus oeni is another member of the lactic acid bacteria and it occurs naturally in marshes and similar environments. It carries out malolactic conversion during secondary fermentation in wine production which is the conversion of malic acid to lactic acid with a concomitant rise in pH, making the wine microbiologically stable and enhancing the sensory properties of the wine (aroma, flavor, and texture). The organism's high tolerance to sulfite and ethanol mean that it will be the predominant organism in the wine at the end of fermentation where it cleans up the remaining sugars and converts the bitter-tasting malic acid.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011080:2789744 Salmonella enterica subsp. enterica serovar Newport str. SL254,

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: The SL254 strain is an MDR strain from one of two distinct lineages of the Newport serovar. Salmonella enterica subsp. enterica serovar Newport is common worldwide. Outbreak investigations and targeted studies have identified dairy cattle as the main reservoir this serotype. Antimicrobial resistance (Newport MDR-AmpC) is particularly problematic in this serotype, and the prevalence of Newport MDR-AmpC isolates from humans in the United States has increased from 0% during 1996-1997 to 26% in 2001. MDR strains have been recorded as resistant to ampicillin, chloramphenicol, streptomycin, sulphonamides and tetracycline (ACSSuT) and many of these strains show intermediate or full resistance to third-generation cephalosporins, kanamycin, potentiated sulphonamides, and gentamicin. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.