Pre_GI: SWBIT SVG BLASTN

Query: NC_008497:447427 Lactobacillus brevis ATCC 367, complete genome

Lineage: Lactobacillus brevis; Lactobacillus; Lactobacillaceae; Lactobacillales; Firmicutes; Bacteria

General Information: Lactic acid bacterium used in fermentation. They are commonly found in the oral, vaginal, and intestinal regions of many animals. They are important industrial microbes that contribute to the production of cheese, yogurt, fermented milks, and other products, all stemming from the production of lactic acid, which inhibits the growth of other organisms as well as lowering the pH of the food product. Industrial production requires the use of starter cultures, which are carefully created, cultivated, and maintained, which produce specific end products during fermentation that impart flavor to the final product, as well as contributing important metabolic reactions, such as the breakdown of milk proteins during cheese production. The end product of fermentation, lactic acid, is also being used as a starter molecule for complex organic molecule syntheses. This organism is used as a starter culture for various types of beer, sourdough, and silage fermentation.

No Graph yet!

Subject: NC_007952:1293024 Burkholderia xenovorans LB400 chromosome 2, complete sequence

Lineage: Burkholderia xenovorans; Burkholderia; Burkholderiaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: Originally identified as Pseudomonas sp. LB400 that was found in contaminated soil in upstate New York, USA, this organism is now classified in the genus Burkholderia. Polychlorinated biphenyl-degrading bacterium. Member of the genus Burkholderia are versatile organisms that occupy a surprisingly wide range of ecological niches. These bacteria are exploited for biocontrol, bioremediation, and plant growth promotion purposes. Burkholderia xenovorans has been found on fungi, animals, and from human clinical isolates such as from cystic fibrosis (CF) patients. It may be tightly associated with white-rot fungus, as the degadation of lignin by the fungus results in aromatic compounds the bacterium can then degrade. This organism is exceptionally capable of degradation of polychlorinated biphenyls (PCBs), which are environmental pollutants, and thus it may play a role in bioremediation of polluted and toxic sites and is studied as a model bioremediator. PCBs can be utilized as the sole carbon and energy source by this organism. The pathways for degradation of PCBs have been extensively characterized at both the genetic and the molecular level and have become a model system for the bacterial breakdown of these very persistent environmental contaminants.