Pre_GI: SWBIT SVG BLASTN

Query: NC_008380:4078670 Rhizobium leguminosarum bv. viciae 3841, complete genome

Lineage: Rhizobium leguminosarum; Rhizobium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This biovar nodulates legumes in the Tribe Viciae (Vicia, Pisum, Lathyrus, Lens). This strain is a spontaneous streptomycin-resistant mutant of strain 300. Nitrogen-fixing plant symbiont. This organism, like other Rhizobia, establishes a symbiotic relationship with a legume plant, providing nitrogen in exchange for a protected environment. The legume roots secrete flavonoids and isoflavonoids which the bacteria recognize and use to turn on genes involved in root nodulation. Many of the root nodulation genes are involved in synthesis and secretion of a nodule inducing signal, a lipochito-oligosaccharide molecule, which the plant recognizes, triggering nodule formation. The bacterium is endocytosed and exists inside a membrane bound organelle, the symbiosome, and fixes nitrogen for the plant cell while the host cell provides carbon compounds for the bacterium to grow on. The nitrogen fixation is important as it obviates the need for expensive and environmentally damaging fertilizer use.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010001:4168817 Clostridium phytofermentans ISDg, complete genome

Lineage: Lachnoclostridium phytofermentans; Lachnoclostridium; Lachnospiraceae; Clostridiales; Firmicutes; Bacteria

General Information: Isolated from forest soil near the Quabbin Reservoir in Massachusetts, USA. This organism plays an important industrial and ecological role in the anaerobic fermentation of cellulose and produces economically significant levels of acetate and ethanol. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA.