Pre_GI: SWBIT SVG BLASTN

Query: NC_008369:514995 Francisella tularensis subsp. holarctica OSU18, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: Isolated from a beaver that died of tularemia in Oklahoma in 1978. Causative agent of tularemia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_005363:2588852 Bdellovibrio bacteriovorus HD100, complete genome

Lineage: Bdellovibrio bacteriovorus; Bdellovibrio; Bdellovibrionaceae; Bdellovibrionales; Proteobacteria; Bacteria

General Information: This organism is unique in that it is a bacteriolytic microbe that preys on other gram negative bacteria. It is found throughout soil, sewage, and aquatic environments, and is often associated with biofilms. This organism has a biphasic lifestyle which consists of a free living and motile phase, and an attack phase where the bacterium attaches to a host cell, burrows into the periplasm, and begins to degrade the host from the inside out. The organism sheds its flagellum once it makes irreversible contact with the host, and when it is inside, begins to form a bdelloplast, resulting in degradation of the host cell inner membrane and alteration of its peptidoglycan layer, resulting in a spherical cell. The Bdellovibrio cell elongates until it forms a long coiled structure which then divides, forming many flagellated progeny which continue the degradation of the host cell to propagate the life cycle. The genome encodes a large number of degradative and lytic enzymes which are used to degrade the host organism. The organism has numerous deficiencies in its amino acid biosynthetic pathways, suggesting it utilizes prey metabolites for protein synthesis.