Pre_GI: SWBIT SVG BLASTN

Query: NC_008369:1702885 Francisella tularensis subsp. holarctica OSU18, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: Isolated from a beaver that died of tularemia in Oklahoma in 1978. Causative agent of tularemia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_006369:3058000 Legionella pneumophila str. Lens, complete genome

Lineage: Legionella pneumophila; Legionella; Legionellaceae; Legionellales; Proteobacteria; Bacteria

General Information: This serogroup I strain was responsible for a major outbreak in France. Causes Legionnaire's disease. This organism is a non-marine bacterium usually found growing inside other organisms such as protozoans in aquatic environments. They can also be found in soil, freshwater, and in biofilms. The first outbreak of Legionnaire's disease occurred in 1976 at an American Legion convention and the resulting pneumonia-like disease resulted in 34 deaths. The cause of the disease was traced to Legionella bacteria. Once the bacteria are brought into the lungs they make contact with alveolar macrophages and are internalized where they can cause severe respiratory distress. Internalization occurs through specialized vacuoles (replicative phagosomes) that allow the bacteria to grow and replicate prior to escape from the macrophage. Formation of the replicative phagosome, which requires reprogramming of the normal phagosome maturation pathway, requires a type IV secretion system called the Dot/Icm system. This type IV system is closely related to the conjugative system of plasmid ColIb-P9, and is involved in the secretion of numerous protein components that aid in formation of the replicative phagosome. Other virulence determinants include a set of multidrug transporters and other efflux pumps for toxic compounds that may allow the organism to persist in its habitat, a set of LPS phase variable genes that enhance immune evasion, and a type II secretion system for transport of hydrolases.