Pre_GI: SWBIT SVG BLASTN

Query: NC_008343:2589680 Granulibacter bethesdensis CGDNIH1, complete genome

Lineage: Granulibacter bethesdensis; Granulibacter; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Isolated from a patient with fever and lymphadenitis. Chronic granulomatous disease (CGD) is a rare inherited disease of the phagocyte NADPH oxidase system causing defective production of toxic oxygen metabolites, impaired bacterial and fungal killing, and recurrent life-threatening infections. This species was isolated from a 39 year old man with CGD and was shown to be the causal agent of the disease by classical methods. The isolation of this organism is the first known case of a bacterium from the Acetobacteraceae family to be the cause of an invasive human disease.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003062:2506959 Agrobacterium tumefaciens str. C58 chromosome circular, complete

Lineage: Agrobacterium fabrum; Agrobacterium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: This strain is a biovar 1 nopaline-producing strain originally isolated from a cherry tree tumor. Strains of Agrobacterium are classified in three biovars based on their utilisation of different carbohydrates and other biochemical tests. The differences between biovars are determined by genes on the single circle of chromosomal DNA. Biovar differences are not particularly relevant to the pathogenicity of A. tumefaciens, except in one respect: biovar 3 is found worldwide as the pathogen of gravevines. This species causes crown gall disease of a wide range of dicotyledonous (broad-leaved) plants, especially members of the rose family such as apple, pear, peach, cherry, almond, raspberry and roses. Because of the way that it infects other organisms, this bacterium has been used as a tool in plant breeding. Any desired genes, such as insecticidal toxin genes or herbicide-resistance genes, can be engineered into the bacterial DNA, and then inserted into the plant genome. This process shortens the conventional plant breeding process, and allows entirely new (non-plant) genes to be engineered into crops.