Pre_GI: SWBIT SVG BLASTN

Query: NC_008343:1548020 Granulibacter bethesdensis CGDNIH1, complete genome

Lineage: Granulibacter bethesdensis; Granulibacter; Acetobacteraceae; Rhodospirillales; Proteobacteria; Bacteria

General Information: Isolated from a patient with fever and lymphadenitis. Chronic granulomatous disease (CGD) is a rare inherited disease of the phagocyte NADPH oxidase system causing defective production of toxic oxygen metabolites, impaired bacterial and fungal killing, and recurrent life-threatening infections. This species was isolated from a 39 year old man with CGD and was shown to be the causal agent of the disease by classical methods. The isolation of this organism is the first known case of a bacterium from the Acetobacteraceae family to be the cause of an invasive human disease.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_014479:509919 Bacillus subtilis subsp. spizizenii str. W23 chromosome, complete

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system.The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.