Pre_GI: SWBIT SVG BLASTN

Query: NC_008312:2941500 Trichodesmium erythraeum IMS101, complete genome

Lineage: Trichodesmium erythraeum; Trichodesmium; ; Oscillatoriales; Cyanobacteria; Bacteria

General Information: Trichodesmium erythraeum strain IMS101 was isolated from the North Carolina coast in 1992 and grows in straight filaments. Filamentous marine cyanobacterium. This filamentous marine cyanobacterium is a nitrogen-fixing organism that contribues a significant amount of the global fixed nitrogen each year. These bacteria are unusual in that nitrogen fixation takes place in a differentiated cell called the diazocyte which is different from the nitrogen-fixing differentiated cell (heterocyst) found in other cyanobacteria. The diazocyte is developed in order to protect the oxygen-sensitive nitrogenases and includes a number of changes including production of more membranes and down-regulation of photosynthetic activity during times of peak nitrogen fixation (noontime). This organism gives the Red Sea its name when large blooms appear and is one of the organisms most often associated with large blooms in marine waters.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008312:6072000 Trichodesmium erythraeum IMS101, complete genome

Lineage: Trichodesmium erythraeum; Trichodesmium; ; Oscillatoriales; Cyanobacteria; Bacteria

General Information: Trichodesmium erythraeum strain IMS101 was isolated from the North Carolina coast in 1992 and grows in straight filaments. Filamentous marine cyanobacterium. This filamentous marine cyanobacterium is a nitrogen-fixing organism that contribues a significant amount of the global fixed nitrogen each year. These bacteria are unusual in that nitrogen fixation takes place in a differentiated cell called the diazocyte which is different from the nitrogen-fixing differentiated cell (heterocyst) found in other cyanobacteria. The diazocyte is developed in order to protect the oxygen-sensitive nitrogenases and includes a number of changes including production of more membranes and down-regulation of photosynthetic activity during times of peak nitrogen fixation (noontime). This organism gives the Red Sea its name when large blooms appear and is one of the organisms most often associated with large blooms in marine waters.