Pre_GI: SWBIT SVG BLASTN

Query: NC_008261:676000 Clostridium perfringens ATCC 13124, complete genome

Lineage: Clostridium perfringens; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: The species type strain, originally isolated from a human gas gangrene patient. Causative agent of gas gangrene. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Known opportunistic toxin-producing pathogens in animals and humans. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This organism is a causative agent of a wide spectrum of necrotic enterotoxicoses. It also causes such animal diseases as lamb dysentery, ovine enterotoxemia (struck), pulpy kidney disease in lambs and other enterotoxemias in lambs and calves. It is commonly found in the environment (soil, sewage) and in the animal and human gastrointestinal tract as a member of the normal microflora. It is a fast growing (generation time 8-10 min) anaerobic flesh-eater. Active fermentative growth is accompanied by profuse generation of molecular hydrogen and carbon dioxide. It is also oxygen tolerant which makes it an easy object to work with in laboratories. C. perfringens have been developed and the species became a model organism in clostridial genetic studies. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. All types produce the alpha toxin (phospholipase C). Type A strains that cause gas gangrene produce alpha toxin, theta (hemolysin), kappa (collagenase), mu (hyaluronidase), nu (DNAse) and neuraminidase which are all the enzymatic factors aiding the bacterium in invading and destruction of the host tissues. Type C strains produce alpha toxin, beta toxin and prefringolysin enteritis. In addition to alpha toxin, Type B strains produce beta toxin, types B and D produce the pore forming epsilon toxin and type E strains produce iota toxin.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_004337:3590323 Shigella flexneri 2a str. 301, complete genome

Lineage: Shigella flexneri; Shigella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain was isolated in 1984 from a patient in Beijing, China. It is similar to pathogenic Escherichia coli except for the more numerous insertion sequences and contains a virulence plasmid (pCP301). Causes enteric disease. Shigella This genus is named for the Japanese scientist (Shiga) who discovered them in the 1890s. They are closely related to the Escherichia group, and may be considered the same species. are human-specific pathogens that are transmitted via contaminated food and water and are the leading causes of endemic bacillary dysentery, and over 1 million deaths worldwide are attributed to them. The bacteria infect the epithelial lining of the colon, causing acute inflammation by entering the host cell cytoplasm and spreading intercellularly. are extremely virulent organisms that require very few cells in order to cause disease. Both the type III secretion system, which delivers effector molecules into the host cell, and some of the translocated effectors such as the invasion plasmid antigens (Ipas), are encoded on the plasmid. The bacterium produces a surface protein that localizes to one pole of the cell (IcsA) which binds to and promotes actin polymerization, resulting in movement of the bacterium through the cell cytoplasm, and eventually to neighboring cells, which results in inflammatory destruction of the mucosal lining. This organism, along with Shigella sonnei, is the major cause of shigellosis in industrialized countries and is responsible for endemic infections.