Pre_GI: SWBIT SVG BLASTN

Query: NC_008146:1535827 Mycobacterium sp. MCS, complete genome

Lineage: Mycobacterium; Mycobacterium; Mycobacteriaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: Mycobacterium MCS was isolated from soil in a wood preservative-contaminated land-treatment unit where remediation of polycyclic aromatic hydrocarbon (PAH) was occurring. This isolate mineralizes small- and large-ring PAHs, in contrast to other PAH-degrading microbes. Bioremediation of PAHs offers an attractive solution to pollution clean-up because it can occur on site and at relative little cost compared to alternatives. This isolate belongs to a fast-growing group of the mycobacterium genus that is defined as Gram-positive, acid-fast, pleomorphic, non-motile rods. Bioremediation of soils contaminated with wood preservatives containing polycyclic aromatic hydrocarbons (PAHs) is desired because of their toxic, mutagenic, and carcinogenic properties. Creosote wood preservative–contaminated soils at the Champion International Superfund Site in Libby, Montana currently undergo bioremediation in a prepared-bed land treatment unit (LTU) process.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_014034:152264 Rhodobacter capsulatus SB1003 chromosome, complete genome

Lineage: Rhodobacter capsulatus; Rhodobacter; Rhodobacteraceae; Rhodobacterales; Proteobacteria; Bacteria

General Information: This strain is a derivative strain isolated in the laboratory of Barry Marrs from the classical progenitor strain B10. It is rifampicin-resistant, produces GTA, and is capable of growing under high illumination (resistant to photooxidative killing). Bacteria belonging to the Rhodobacter group are metabolically versatile as they are able to use photosynthesis and usually can grow under both anaerobic and aerobic conditions. This organism is a facultatively phototrophic purple non-sulfur bacterium and the type species of the Rhodobacter group. The colony's color depends largely on the amount of oxygen present in its environment. While it is able to produce cellular energy in a number of different ways, it can rely on anoxygenic photosynthesis under anaerobic conditions in the presence of light. Some strains produce the Gene Transfer Element (GTA), a pro-phage particle capable of transferring genetic material between strains.