Pre_GI: SWBIT SVG BLASTN

Query: NC_008011:663958 Lawsonia intracellularis PHE/MN1-00, complete genome

Lineage: Lawsonia intracellularis; Lawsonia; Desulfovibrionaceae; Desulfovibrionales; Proteobacteria; Bacteria

General Information: Lawsonia intracellularis PHE/MN1-00 was isolated from intestinal mucosal lesions in pigs that had proliferative enteropathy (PE). When introduced into health pigs, this organism produced the clinical and histological signs of PE. Causative agent for proliferative enteropathy in swine. This organism causes proliferative enteropathy (ileitis) in swine and other domesticated animals resulting in severe losses each year. This obligate intracellular pathogen infects the mucosa of the lower intestinal tract by initially infecting crypt cells, which are precursors that normally grow and divide in order to replace the epithelial cells. Once infection occurs, the crypt cells are stimulated to grow and divide abnormally, resulting in the proliferative phenotype. In severe cases of the disease the entire bowel can become affected and persist for up to 40 days, greatly affecting the host animal.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003155:5005913 Streptomyces avermitilis MA-4680, complete genome

Lineage: Streptomyces avermitilis; Streptomyces; Streptomycetaceae; Actinomycetales; Actinobacteria; Bacteria

General Information: This strain (ATCC 31267) was isolated and characterized in 1978 by R. Burg and colleagues from a soil sample collected in Shizuoka Prefecture, Japan. Antibiotic-producing bacterium. The characteristic earthy smell of freshly plowed soil is actually attributed to the aromatic terpenoid geosmin produced by species of Streptomyces. There are currently 364 known species of this genus, many of which are the most important industrial producers of antibiotics and other secondary metabolites of antibacterial, antifungal, antiviral, and antitumor nature, as well as immunosuppressants, antihypercholesterolemics, etc. Streptomycetes are crucial in the soil environment because their diverse metabolism allows them to degrade the insoluble remains of other organisms, including recalcitrant compounds such as lignocelluloses and chitin. Streptomycetes produce both substrate and aerial mycelium. The latter shows characteristic modes of branching, and in the course of the streptomycete complex life cycle, these hyphae are partly transformed into chains of spores, which are often called conidia or arthrospores. An important feature in Streptomyces is the presence of type-I peptidoglycan in the cell walls that contains characteristic interpeptide glycine bridges. Another remarkable trait of streptomycetes is that they contain very large (~8 million base pairs which is about twice the size of most bacterial genomes) linear chromosomes with distinct telomeres. These rearrangements consist of the deletion of several hundred kilobases, often associated with the amplification of an adjacent sequence, and lead to metabolic diversity within the Streptomyces group. Sequencing of several strains of Streptomyces is aimed partly on understanding the mechanisms involved in these diversification processes. This organism is a well known producer of the anti-parasitic agent avermectin which is widely used to rid livestock of worm and insect infestations and to protect large numbers of people from river blindness in sub-Saharan Africa.