Pre_GI: SWBIT SVG BLASTN

Query: NC_007948:4646344 Polaromonas sp. JS666, complete genome

Lineage: Polaromonas; Polaromonas; Comamonadaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain was isolated from sediment contaminated with cis-dichloroethane (cDCE), a common pollutant resulting from widespread manufacture and use of industrial solvents. This bacterium is the only known organism capable of using cDCE as a sole carbon and energy source. The ability of this strain to convert ethene to epoxyethane suggests that the first step in the cDCE biodegradation pathway is the oxidation of cDCE to an epoxide compound. Bacteria that are able to grow on cDCE are rare, and have only been found in very few highly selective artificial environments. The discovery of this bacteria may provide a low cost, self-sustaining bioremediation method in areas where cDCE is a problem contaminant.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_009654:615504 Marinomonas sp. MWYL1, complete genome

Lineage: Marinomonas; Marinomonas; Oceanospirillaceae; Oceanospirillales; Proteobacteria; Bacteria

General Information: Marinomonas MWYL1 was isolated from the root surface of the salt marsh grass Spartina anglica, growing near the North Norfolk, England village of Stiffkey. The genus Marinomonas comprises a widespread group of g -proteobacteria that exist in coastal waters, and which had been earlier been included in the genus Alteromonas. The interest in Marinomonas MWYL 1 was that it could grow on the betaine molecule Dimethylsulphoniopropionate (DMSP) as sole carbon source and, when it did do, it released large amounts of the gas dimethyl sulphide. DMSP is a compatible solute that is used by many marine phytoplankton and seaweed macroalgae as an osmoticum and an anti-stress compound. In addition, a few known land angiosperms make DMSP and these include certain species of Spartina - hence the choice of these plants as a source for DMSP-degrading bacteria. Indeed, others had shown previously that the DMSP-catabolising bacteria isolated from Spartina root surfaces included Marinomonas strains.