Pre_GI: SWBIT SVG BLASTN

Query: NC_007912:1173752 Saccharophagus degradans 2-40, complete genome

Lineage: Saccharophagus degradans; Saccharophagus; Alteromonadaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain is a marine gamma-proteobacterium that was isolated from decaying Spartina alterniflora, a salt marsh cord grass, in the Chesapeake Bay, USA. Saccharophagus degradans 2-40 has been used to produce ethanol from plant material and may be useful for the production bioethanol. Bacterium able to degrade complex carbohydrates. Saccharophagus degradans is capable of degrading insoluble complex carbohydrates through the collective action of enzyme complexes found on its cell surfaces, utilizing the degradation products as a carbon source. This organism may be useful in bioremediation. The degradative enzymes this organism produces are typically exoenzymes that are collected and organized into large surface complexes termed cellulosomes.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010376:606000 Finegoldia magna ATCC 29328, complete genome

Lineage: Finegoldia magna; Finegoldia; Clostridiales Family XI; Clostridiales; Firmicutes; Bacteria

General Information: It is isolated most frequently from various infection sites, including soft tissue, bone and joint, and diabetic foot infections. This species, formerly Peptostreptococcus magnus, is a commensal bacterium colonizing human skin and mucous membranes. It has been shown to cause valve endocarditic in humans. Gram-positive anaerobic cocci (GPAC) are a major part of the normal human flora colonizing skin and mucous membranes of the mouth and gastrointestinal tracts. In GPAC, Finegoldia magna (formerly Peptostreptococcus magnus) has the highest pathogenicity and is isolated most frequently from various infection sites, including soft tissue, bone and joint, and diabetic foot infections.