Pre_GI: SWBIT SVG BLASTN

Query: NC_007880:1703346 Francisella tularensis subsp. holarctica, complete genome

Lineage: Francisella tularensis; Francisella; Francisellaceae; Thiotrichales; Proteobacteria; Bacteria

General Information: This strain (live vaccine strain) was created in the 1960's in the USA and provides protection against tularemia in animal models as well as in humans. Causative agent of tularemia. This organism was first identified by Edward Francis as the causative agent of a plague-like illness that affected squirrels in Tulare county in California in the early part of the 20th century. The organism now bears his name. The disease, which has been noted throughout recorded history, can be transmitted to humans by infected ticks or deerflies, infected meat, or by aerosol, and thus is a potential bioterrorism agent. This organism has a high infectivity rate, and can invade phagocytic and nonphagocytic cells, multiplying rapidly. Once within a macrophage, the organism can escape the phagosome and live in the cytosol. It is an aquatic organism, and can be found living inside protozoans, similar to what is observed with Legionella.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_011768:1718869 Desulfatibacillum alkenivorans AK-01, complete genome

Lineage: Desulfatibacillum alkenivorans; Desulfatibacillum; Desulfobacteraceae; Desulfobacterales; Proteobacteria; Bacteria

General Information: Desulfatibacillum alkenivorans AK-01 was isolated from sediment from the Arthur Kill, NJ/NY waterway, USA. This site has a history of contamination from petrochemical industry and strain AK-01 is able to degrade 13 to 18 carbon alkanes. Desulfatibacillum alkenivorans is an alkene-degrading, sulfate-reducing bacterium isolated from estuarine sediment. It activates alkanes via subterminal addition of the alkane to fumarate.