Pre_GI: SWBIT SVG BLASTN

Query: NC_007799:686358 Ehrlichia chaffeensis str. Arkansas, complete genome

Lineage: Ehrlichia chaffeensis; Ehrlichia; Anaplasmataceae; Rickettsiales; Proteobacteria; Bacteria

General Information: This strain is the first isolate of Ehrlichia chaffeensis, which was obtained from a patient on an army base in Arkansas, USA in 1990. Causes disease in humans. This organism is an obligate intracellular pathogen that exists within vacuoles in the cytoplasm of monocytes or granulocytes. Transferred during an insect (tick) bite, it can cause disease in humans (human monocytic ehrlichiosis) and can reside in several other animals and is a problem in immunocompromised patients. The bacterium inhibits phagosome-lysozome fusion as well as programmed cell death (apoptosis) of the host cell, similar to what is observed with Anaplasma phagocytophilum.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010498:3023442 Escherichia coli SMS-3-5, complete genome

Lineage: Escherichia coli; Escherichia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Escherichia coli SMS-3-5 was isolated from a toxic-metal contaminated site, Shipyard Creek, Charleston, South Carolina, USA. This strain is highly resistant to a number of antibiotics. This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. E. coli, is capable of causing various diseases in its host, especially when they acquire virulence traits. E. coli can cause urinary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes.