Pre_GI: SWBIT SVG BLASTN

Query: NC_007722:55558 Erythrobacter litoralis HTCC2594, complete genome

Lineage: Erythrobacter litoralis; Erythrobacter; Erythrobacteraceae; Sphingomonadales; Proteobacteria; Bacteria

General Information: This strain was collected from the Sargasso Sea at a depth of 10 meters. Phototrophic bacterium. Organisms in this aerobic phototrophic genus are found in marine environments. Members of this group produce bacteriochlorophyll a, which is normally found in anaerobic organisms. One theory to explain this is that the anoxygenic photosynthetic gene cluster was acquired by these organisms via lateral gene transfer. Although they require an organic carbon substrate for growth, they are able to supplement a significant fraction of their metabolic requirements with photosynthetically derviced energy. This species was isolated from a marine cyanobacterial mat. Although they require an organic carbon substrate for growth, they are able to supplement a significant fraction of their metabolic requirements with photosynthetically derviced energy. The presence of the carotenoids bacteriorubixanthinal and erythroxanthin sulfate give this organism a reddish color.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010475:2896000 Synechococcus sp. PCC 7002, complete genome

Lineage: Synechococcus; Synechococcus; Synechococcaceae; Chroococcales; Cyanobacteria; Bacteria

General Information: The cyanobacterium Synechococcus sp. PCC 7002 (formerly known as Agmenellum quadruplicatum strain PR-6) was originally isolated in 1961 by Chase Van Baalen from an onshore, marine mud flat sample derived from fish pens on Maguyes Island, La Parguera, Puerto Rico. The organism grows in brackish (euryhaline/marine) water and is unicellular but tends to form short filaments of two to four cells during exponential growth at the temperature optimum of 38 degrees C. The strain is extremely tolerant of high light intensities and has been grown at light intensities equivalent to two suns. This unique combination of physiological and genetic properties have long made this strain an important model system to studies of the oxygenic photosynthetic apparatus, the regulation of carbon and nitrogen metabolism, and other aspects of cyanobacterial physiology and metabolism.