Pre_GI: SWBIT SVG BLASTN

Query: NC_007633:952728 Mycoplasma capricolum subsp. capricolum ATCC 27343, complete

Lineage: Mycoplasma capricolum; Mycoplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria

General Information: Pathogen of goats. This genus currently comprises more than 120 obligate parasitic species found in a wide spectrum of hosts, including humans, animals, insects and plants. The primary habitats of human and animal mycoplasmas are mucous membranes of the respiratory and urogenital tracts, eyes, mammary glands and the joints. Infection that proceeds through attachment of the bacteria to the host cell via specialized surface proteins, adhesins, and subsequent invasion, results in prolonged intracellular persistence that may cause lethality. Once detected in association with their eukaryotic host tissue, most mycoplasmas can be cultivated in the absence of a host if their extremely fastidious growth requirements are met.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_014976:1174430 Bacillus subtilis BSn5 chromosome, complete genome

Lineage: Bacillus subtilis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: Bacillus subtilis BSn5 was isolated from Amorphophallus konjac calli tissue culture. Bacilllus subtilis BSn5 could inhibit Erwinia carotovora subsp. carotovora strain SCG1, which causes Amorphophallus soft rot disease and affects Amorphophallus industry development This organism was one of the first bacteria studied, and was named Vibrio subtilis in 1835 and renamed Bacillus subtilis in 1872. It is one of the most well characterized bacterial organisms, and is a model system for cell differentiation and development. This soil bacterium can divide asymmetrically, producing an endospore that is resistant to environmental factors such as heat, acid, and salt, and which can persist in the environment for long periods of time. The endospore is formed at times of nutritional stress, allowing the organism to persist in the environment until conditions become favorable. Prior to the decision to produce the spore the bacterium might become motile, through the production of flagella, and also take up DNA from the environment through the competence system.The sporulation process is complex and involves the coordinated regulation of hundreds of genes in the genome. This initial step results in the coordinated asymmetric cellular division and endospore formation through multiple stages that produces a single spore from the mother cell.