Pre_GI: SWBIT SVG BLASTN

Query: NC_007613:1038000 Shigella boydii Sb227, complete genome

Lineage: Shigella boydii; Shigella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This strain is an isolate from an epidemic that took place in China in the 1950s. Causes dysentery. This genus is named for the Japanese scientist (Shiga) who first discovered these organisms in the 1890s. They are closely related to the Escherichia group, and may be considered the same species. These organisms are human-specific pathogens that are transmitted via contaminated food and water and are the leading causes of endemic bacillary dysentery, causing over 160 million cases of infection and 1 million deaths yearly worldwide. The bacteria infect the epithelial lining of the colon, causing acute inflammation by entering the host cell cytoplasm and spreading intercellularly. are extremely virulent organisms that can cause an active infection after a very low exposure. Both the type III secretion system, which delivers effector molecules into the host cell, and some of the translocated effectors such as the invasion plasmid antigens (Ipas), are encoded on the plasmid. The bacterium produces a surface protein that localizes to one pole of the cell (IcsA) which binds to and promotes actin polymerization, resulting in movement of the bacterium through the cell cytoplasm, and eventually to neighboring cells, which results in inflammatory destruction of the mucosal lining. Shigella boydii is uncommon except in India, where it was first isolated. Progression to clinical dysentery occurs in most patients infected with this organism.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_013961:73037 Erwinia amylovora, complete genome

Lineage: Erwinia amylovora; Erwinia; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: This bacterium is the causative agent of Fire Blight, a destructive disease of Maloid fruit trees, such as apple and pear. Outbreaks are sporadic in the Northeast, but result in serious damage to roots, blossoms, fruit, and shoots when they occur. The pathogen overwinters in cankers or in smaller limbs. During early spring, in response to both temperature increases and bud development, the bacteria multiplies and may be seen as a yellowish ooze around the perimeter of the canker. Flies and other insects are attracted to the ooze and disperse the inoculum to other trees in the orchard. This species has recently become resistant to streptomycin, an antibiotic traditionally used in its control.