Pre_GI: SWBIT SVG BLASTN

Query: NC_007517:1998342 Geobacter metallireducens GS-15, complete genome

Lineage: Geobacter metallireducens; Geobacter; Geobacteraceae; Desulfuromonadales; Proteobacteria; Bacteria

General Information: First isolated from the Potomac river downstream of Washington, DC, USA in 1987. This organism actively moves towards metal attractants such as iron and manganese oxides, which are insoluble, and produces type IV pili for attachment to the insoluble substrates. Common metal-reducing bacterium. This organism, similar to what is observed in Geobacteria sulfurreducens, couples the oxidation of organic molecules to the reduction of iron by using insoluble Fe (III) as an electron acceptor under anaerobic conditions. This bacterium plays an imporant part of the nutrient cycling in aquatic environments. The cell can also use uranium and plutonium, therefore, this organism and may be important for the bioremediation of contaminated waste sites.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_007948:4558000 Polaromonas sp. JS666, complete genome

Lineage: Polaromonas; Polaromonas; Comamonadaceae; Burkholderiales; Proteobacteria; Bacteria

General Information: This strain was isolated from sediment contaminated with cis-dichloroethane (cDCE), a common pollutant resulting from widespread manufacture and use of industrial solvents. This bacterium is the only known organism capable of using cDCE as a sole carbon and energy source. The ability of this strain to convert ethene to epoxyethane suggests that the first step in the cDCE biodegradation pathway is the oxidation of cDCE to an epoxide compound. Bacteria that are able to grow on cDCE are rare, and have only been found in very few highly selective artificial environments. The discovery of this bacteria may provide a low cost, self-sustaining bioremediation method in areas where cDCE is a problem contaminant.