Query: NC_007517:1107408 Geobacter metallireducens GS-15, complete genome
Lineage: Geobacter metallireducens; Geobacter; Geobacteraceae; Desulfuromonadales; Proteobacteria; Bacteria
General Information: First isolated from the Potomac river downstream of Washington, DC, USA in 1987. This organism actively moves towards metal attractants such as iron and manganese oxides, which are insoluble, and produces type IV pili for attachment to the insoluble substrates. Common metal-reducing bacterium. This organism, similar to what is observed in Geobacteria sulfurreducens, couples the oxidation of organic molecules to the reduction of iron by using insoluble Fe (III) as an electron acceptor under anaerobic conditions. This bacterium plays an imporant part of the nutrient cycling in aquatic environments. The cell can also use uranium and plutonium, therefore, this organism and may be important for the bioremediation of contaminated waste sites.
Subject: NC_008148:1567703 Rubrobacter xylanophilus DSM 9941, complete genome
Lineage: Rubrobacter xylanophilus; Rubrobacter; Rubrobacteraceae; Rubrobacterales; Actinobacteria; Bacteria
General Information: Cellulose-degrading bacterium. This genus contains two species: Rubrobacter radiotolerans and Rubrobacter xylanophilus. These two species represent the oldest lineage (deepest branch) of the Actinobacteria and are distantly related to Mycobacteria and Streptomycetes. Both species are thermophilic and exhibit high tolerance to radiation. Very little research has been done on these organisms and little is known other than their taxonomic characterization. Rubrobacter xylanophilus was isolated from a thermally polluted industrial runoff in the United Kingdom. Some strains of this species are capable of degrading hemicellulose and xylan (polymers of plant origin), and could play a significant role in the degradation of these compounds in the wood and paper industry as well as in the environment.