Pre_GI: SWBIT SVG BLASTN

Query: NC_007492:4563981 Pseudomonas fluorescens PfO-1, complete genome

Lineage: Pseudomonas fluorescens; Pseudomonas; Pseudomonadaceae; Pseudomonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from agricultural loam (sand, clay, and organic matter) soil in 1988 by Compeau et al. and is well adapted to soil environments. Bacteria belonging to the Pseudomonas group are common inhabitants of soil and water and can also be found on the surfaces of plants and animals. Pseudomonas bacteria are found in nature in a biofilm or in planktonic form. Pseudomonas bacteria are renowned for their metabolic versatility as they can grow under a variety of growth conditions and do not need any organic growth factors. This organism is a nonpathogenic saprophyte which inhabits soil, water and plant surface environments. If iron is in low supply, it produces a soluble, greenish fluorescent pigment, which is how it was named. As these environmentally versatile bacteria possess the ability to degrade (at least partially) multiple different pollutants, they are studied in their use as bioremediants.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003197:2152994 Salmonella typhimurium LT2, complete genome

Lineage: Salmonella enterica; Salmonella; Enterobacteriaceae; Enterobacteriales; Proteobacteria; Bacteria

General Information: Causes enteric infections. This group of Enterobactericiae have pathogenic characteristics and are one of the most common causes of enteric infections (food poisoning) worldwide. They were named after the scientist Dr. Daniel Salmon who isolated the first organism, Salmonella choleraesuis, from the intestine of a pig. The presence of several pathogenicity islands (PAIs) that encode various virulence factors allows Salmonella spp. to colonize and infect host organisms. There are two important PAIs, Salmonella pathogenicity island 1 and 2 (SPI-1 and SPI-2) that encode two different type III secretion systems for the delivery of effector molecules into the host cell that result in internalization of the bacteria which then leads to systemic spread.