Pre_GI: SWBIT SVG BLASTN

Query: NC_007481:3167434 Pseudoalteromonas haloplanktis TAC125 chromosome I, complete

Lineage: Pseudoalteromonas haloplanktis; Pseudoalteromonas; Pseudoalteromonadaceae; Alteromonadales; Proteobacteria; Bacteria

General Information: This strain was isolated from a sample of coastal sea water near a French Antarctic station. This organism is adapted to growth at low temperatures and reactive oxygen species by a number of putative dioxygenases and fatty acid desaturases amongst other proteins. The organism can grow optimally in salt concentrations of 1.5 to 3.5% NaCl.The genome consists of 2 chromosomes, one of which may replicate unidirectionally. Some interesting features of this genome include the lack of the nucleoid-associated gene hns, a lack of genes involved in molybdopterin metabolism, a lack of the cAMP-CAP complex, and a lack of the PEP-dependent PTS system.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_010742:1794000 Brucella abortus S19 chromosome 1, complete sequence

Lineage: Brucella abortus; Brucella; Brucellaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Causes bovine brucellosis. They are highly infectious, and can be spread through contact with infected animal products or through the air, making them a potential bioterrorism agent. Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Once the organism has entered the body, it can become intracellular, and enter the blood and lymphatic regions, multiplying inside phagocytes before eventually causing bacteremia (spread of bacteria through the blood). Virulence may depend on a type IV secretion system which may promote intracellular growth by secreting important effector molecules. This organism was first noticed on the island of Malta by Dr. David Bruce during an epidemic among British soldiers. It is the primary cause of bovine brucellosis, which results in enormous (billions of dollars) economic losses due primarily to reproductive failure and food losses. In man, it causes undulant fever, a long debilitating disease that is treated by protracted administration of antibiotics.