Pre_GI: SWBIT SVG BLASTN

Query: NC_007413:1570000 Anabaena variabilis ATCC 29413, complete genome

Lineage: Anabaena variabilis; Anabaena; Nostocaceae; Nostocales; Cyanobacteria; Bacteria

General Information: These cyanobacteria are bluegreen algae that are capable of fixing carbon and nitrogen. They form long filaments and can be found worldwide in various aquatic environments as well as some terrestrial ones. These bacteria can form a variety of differentiated cell types, including spore-like cells (akinetes), small motile filaments (hormongia) and most importantly, heterocysts that are nitrogen-producing cells. The heterocyst produces multiple layers outside of its cell wall, shuts down photosystem II in order to inhibit oxygenic photosynthesis and ramps up metabolism in order to use up the oxygen present. Heterocysts donate fixed nitrogen compounds as amino acids to neighboring cells and in return receive a photosynthetically produced carbon source such as sucrose. These organisms produce toxic blooms in aquatic environments that are harmful or fatal to animals and humans due to the various cyanotoxins they produce. Anabaena variabilis is a filamentous heterocyst-forming cyanobacterium that fixes nitrogen and CO2 using the energy of sunlight via oxygen-evolving plant-type photosynthesis. In addition, this organism has been studied extensively for the production of hydrogen using solar energy.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_008261:2957354 Clostridium perfringens ATCC 13124, complete genome

Lineage: Clostridium perfringens; Clostridium; Clostridiaceae; Clostridiales; Firmicutes; Bacteria

General Information: The species type strain, originally isolated from a human gas gangrene patient. Causative agent of gas gangrene. This genus comprises about 150 metabolically diverse species of anaerobes that are ubiquitous in virtually all anoxic habitats where organic compounds are present, including soils, aquatic sediments and the intestinal tracts of animals and humans. This shape is attributed to the presence of endospores that develop under conditions unfavorable for vegetative growth and distend single cells terminally or sub-terminally. Spores germinate under conditions favorable for vegetative growth, such as anaerobiosis and presence of organic substrates. It is believed that present day Mollicutes (Eubacteria) have evolved regressively (i.e., by genome reduction) from gram-positive clostridia-like ancestors with a low GC content in DNA. Known opportunistic toxin-producing pathogens in animals and humans. Some species are capable of producing organic solvents (acetone, ethanol, etc,), molecular hydrogen and other useful compounds. This organism is a causative agent of a wide spectrum of necrotic enterotoxicoses. It also causes such animal diseases as lamb dysentery, ovine enterotoxemia (struck), pulpy kidney disease in lambs and other enterotoxemias in lambs and calves. It is commonly found in the environment (soil, sewage) and in the animal and human gastrointestinal tract as a member of the normal microflora. It is a fast growing (generation time 8-10 min) anaerobic flesh-eater. Active fermentative growth is accompanied by profuse generation of molecular hydrogen and carbon dioxide. It is also oxygen tolerant which makes it an easy object to work with in laboratories. C. perfringens have been developed and the species became a model organism in clostridial genetic studies. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. Known isolates belong to five distinct types (A, B, C, D, and E) that are distinguished based on the specific extracellular toxins they produce. All types produce the alpha toxin (phospholipase C). Type A strains that cause gas gangrene produce alpha toxin, theta (hemolysin), kappa (collagenase), mu (hyaluronidase), nu (DNAse) and neuraminidase which are all the enzymatic factors aiding the bacterium in invading and destruction of the host tissues. Type C strains produce alpha toxin, beta toxin and prefringolysin enteritis. In addition to alpha toxin, Type B strains produce beta toxin, types B and D produce the pore forming epsilon toxin and type E strains produce iota toxin.