Pre_GI: SWBIT SVG BLASTN

Query: NC_007181:1094422 Sulfolobus acidocaldarius DSM 639, complete genome

Lineage: Sulfolobus acidocaldarius; Sulfolobus; Sulfolobaceae; Sulfolobales; Crenarchaeota; Archaea

General Information: Sulfolobus acidocaldarius DSM 639 was isolated from and acidic hot spring in Yellowstone National Park. Extreme thermoacidophilic sulfur-oxidizing archaeon. This organsim is an extreme thermoacidophilic, sulfur-oxidizing archaeon commonly found in hot springs growing at very high temperatures. This obligate aerobe is immotile and grows at a temperature of 55-85 degrees C with optimal growth at 70-75 degrees C. The pH for growth is 1-6 with an optimum pH 2-3.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_012850:3454270 Rhizobium leguminosarum bv. trifolii WSM1325, complete genome

Lineage: Rhizobium leguminosarum; Rhizobium; Rhizobiaceae; Rhizobiales; Proteobacteria; Bacteria

General Information: Temp: Mesophile; Habitat: Host, Root nodule. This biovar is a symbiont of clover plants and is important commercially as it is used in the agricultural industry. Strain WSM1325 is compatible with many perennial clovers of Mediterranean origin used in farming, such as T. pratense, and is therefore one of the most important clover inoculants but is incompatible with American and African perennial clovers, such as those nodulated by the dissimilar strain WSM2304. This organism, like other Rhizobia, establishes a symbiotic relationship with a legume plant, providing nitrogen in exchange for a protected environment. The legume roots secrete flavonoids and isoflavonoids which the bacteria recognize and use to turn on genes involved in root nodulation. Many of the root nodulation genes are involved in synthesis and secretion of a nodule inducing signal, a lipochito-oligosaccharide molecule, which the plant recognizes, triggering nodule formation. The bacterium is endocytosed and exists inside a membrane bound organelle, the symbiosome, and fixes nitrogen for the plant cell while the host cell provides carbon compounds for the bacterium to grow on. The nitrogen fixation is important as it obviates the need for expensive and environmentally damaging fertilizer use.