Pre_GI: SWBIT SVG BLASTN

Query: NC_007168:2448422 Staphylococcus haemolyticus JCSC1435, complete genome

Lineage: Staphylococcus haemolyticus; Staphylococcus; Staphylococcaceae; Bacillales; Firmicutes; Bacteria

General Information: Staphylococcus haemolyticus JCSC1435 was isolated from a Japanese inpatient at Juntendo Hospital, Tokyo, in 2000. This strain is a highly resistant strain which has been shown to generate spontaneous antibiotic sensitive mutants. Causes opportunistic infections in humans. Staphylcocci are generally found inhabiting the skin and mucous membranes of mammals and birds. Some members of this genus can be found as human commensals and these are generally believed to have the greatest pathogenic potential in opportunistic infections. Staphylococcus haemolyticus was originally isolated from human skin and traditionally considered to be a nonpathogenic commensal. Recently this organism has been recognized as a pathogen in animals and humans. It is known to be involved in opportunistic infections associated with the implantation of foreign bodies, paticularly in those with compromised immune systems. Resistance to multiple antibiotics has been observed in clinical isolates and it is possible S. haemolyticus could serve a donor or resistance genes to other more virulent staphlococci.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_005364:1133962 Mycoplasma mycoides subsp. mycoides SC str. PG1, complete genome

Lineage: Mycoplasma mycoides; Mycoplasma; Mycoplasmataceae; Mycoplasmatales; Tenericutes; Bacteria

General Information: Causative agent of contagious pleuropneumonia in livestock. This genus belongs to the class Mollicutes (phylum Tenericutes), a taxonomic group of small (0.3-0.8 micron diameter) monoderm bacteria characterized by the lack of cell walls, reduced genome sizes, and obligate parasitic lifestyles (Krieg et al., 2010). Over 120 obligate parasitic species found in a wide spectrum of hosts, including humans, animals, insects and plants. Infection typically proceeds through the attachment of bacteria to host cells via assorted adhesins or, in some species, through highly specialized surface protein appendages. In some cases, subsequent invasion of host cells results in a prolonged intracellular persistence that may cause lethality. These adaptive strategies are involved in host cell attachment and invasion, as well as immune evasion. Although mycoplasmas are dependent on their association with eukaryotic host tissue in nature, most can be cultivated axenically if their fastidious growth requirements are met. Nearly all mycoplasmas derive energy only from glycolytic pathways, whereas some can hydrolyze arginine. Assigned to the genus Mycoplasma by historic taxonomic precedent, organism in the Mycoplasma mycoides phylogenetic cluster are in fact more closely related to other genera in the Mollicutes (Krieg et al., 2010).