Pre_GI: SWBIT SVG BLASTN

Query: NC_007168:16431 Staphylococcus haemolyticus JCSC1435, complete genome

Lineage: Staphylococcus haemolyticus; Staphylococcus; Staphylococcaceae; Bacillales; Firmicutes; Bacteria

General Information: Staphylococcus haemolyticus JCSC1435 was isolated from a Japanese inpatient at Juntendo Hospital, Tokyo, in 2000. This strain is a highly resistant strain which has been shown to generate spontaneous antibiotic sensitive mutants. Causes opportunistic infections in humans. Staphylcocci are generally found inhabiting the skin and mucous membranes of mammals and birds. Some members of this genus can be found as human commensals and these are generally believed to have the greatest pathogenic potential in opportunistic infections. Staphylococcus haemolyticus was originally isolated from human skin and traditionally considered to be a nonpathogenic commensal. Recently this organism has been recognized as a pathogen in animals and humans. It is known to be involved in opportunistic infections associated with the implantation of foreign bodies, paticularly in those with compromised immune systems. Resistance to multiple antibiotics has been observed in clinical isolates and it is possible S. haemolyticus could serve a donor or resistance genes to other more virulent staphlococci.

- Sequence; - BLASTN hit (Low score = Light, High score = Dark)
- hypothetical protein; - cds: hover for description

BLASTN Alignment.txt

Subject: NC_003997:5200805 Bacillus anthracis str. Ames, complete genome

Lineage: Bacillus anthracis; Bacillus; Bacillaceae; Bacillales; Firmicutes; Bacteria

General Information: This well studied laboratory strain (Porton isolate) is not virulent due to the loss of the two plasmids, pXO1 and pXO2. Under starvation conditions this group of bacteria initiate a pathway that leads to endospore formation, a process that is thoroughly studied and is a model system for prokaryotic development and differentiation. Spores are highly resistant to heat, cold, dessication, radiation, and disinfectants, and enable the organism to persist in otherwise inhospitable environments. Under more inviting conditions the spores germinate to produce vegetative cells. This organism was the first to be shown to cause disease by Dr. Louis Pasteur (the organism, isolated from sick animals, was grown in the laboratory and then used to infect healthy animals and make them sick). This organism was also the first for which an attenuated strain was developed as a vaccine. Herbivorous animals become infected with the organism when they ingest spores from the soil whereas humans become infected when they come into contact with a contaminated animal. PA/LF and PA/EF complexes are internalized by host cells where the LF (metalloprotease) and EF (calmodulin-dependent adenylate cyclase) components act. At high levels LF induces cell death and release of the bacterium while EF increases host susceptibility to infection and promotes fluid accumulation in the cells.